Convex Lifting: Theory and Control Applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex parametric piecewise quadratic optimization: Theory, Algorithms and Control Applications

In this paper we study the problem of parametric minimization of convex piecewise quadratic functions. Our study provides a unifying framework for convex parametric quadratic and linear programs. Furthermore, it extends parametric programming algorithms to problems with piecewise quadratic cost functions, paving the way for new applications of parametric programming in dynamic programming and o...

متن کامل

Theory and Applications of Convex and Non-convex Feasibility Problems

Let X be a Hilbert space and let Cn, n = 1, . . . ,N be convex closed subsets of X . The convex feasibility problem is to find some point x ∈ N ⋂ n=1 Cn, when this intersection is non-empty. In this talk we discuss projection algorithms for finding such a feasibility point. These algorithms have wide ranging applications including: solutions to convex inequalities, minimization of convex nonsmo...

متن کامل

Control Applications of Nonlinear Convex Programming

Since 1984 there has been a concentrated e ort to develop e cient interior-point methods for linear programming (LP). In the last few years researchers have begun to appreciate a very important property of these interior-point methods (beyond their e ciency for LP): they extend gracefully to nonlinear convex optimization problems. New interior-point algorithms for problem classes such as semide...

متن کامل

Lifting Layers: Analysis and Applications

The great advances of learning-based approaches in image processing and computer vision are largely based on deeply nested networks that compose linear transfer functions with suitable non-linearities. Interestingly, the most frequently used nonlinearities in imaging applications (variants of the rectified linear unit) are uncommon in low dimensional approximation problems. In this paper we pro...

متن کامل

Robust Boosting via Convex Optimization: Theory and Applications

In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules – also called base hypotheses. The so-called boosting algorithms iteratively find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2018

ISSN: 0018-9286,1558-2523

DOI: 10.1109/tac.2017.2737234